

Politechnika Świętokrzyska wydział budownictwa i architektury

Annex No. 9 to the Rector's Decision No. 35/19 as amended by Decision No. 12/22

COURSE SPECIFICATION

Course code	full-time:	B1-5-505					
Course code	part-time:	BN1-5-504					
Course title in Polish	Konstrukcje meta	Konstrukcje metalowe 1					
Course title in English	Metal Structures	1					
Valid from academic year	2023/2024						

CURRICULAR ALIGNMENT

Programme	CIVIL ENGINEERING
Level	first-cycle
Programme profile	academic
Mode of attendance	full-time; part-time
Specialism	all
Academic unit responsible for the course	Department of Strength of Materials and Building Structures
Course coordinator	dr hab. inż. Andrzej Szychowski, prof. PŚk
Approved by	prof. dr hab. inż. Grzegorz Świt

COURSE DESCRIPTION

Teaching block		major
Course status		required
Language of instructio	n	Polish
Composition of dollars	full-time	semester V
Semester of delivery	part-time	semester V
Prerequisites		Strength of Materials 1, 2; General Construction; Actions on Building Structures; Structural Mechanics 1
Exam (YES/NO)		NO
ECTS		4

Mode of teaching		lecture	class	lab	project	other
Number of full-time:		30	15	15	15	
hours per semester	part-time:	24	12	12	12	

LEARNING OUTCOMES

Category	Code	Learning outcomes	Corresponding programme outcome code
	W01	Students know how to determine the grade and resistance of a steel section in simple and interacting load conditions.	B1_W08 B1_W09
Knowledge	W02	Students have knowledge of determining the resistance of bar members with loss of stability taken into account.	B1_W07 B1_W09
	W03	Students know how to design welded and bolted joints.	B1_W08 B1_W09
	U01	Students can determine the resistance of a steel section depending on its class/grade and mode of loading.	B1_U02 B1_U14
Skills	U02	Students are able to design compression, transverse bending and simultaneous compression and bending elements taking into account different forms of stability loss.	B1_U10 B1_U13 B1_U14
	U03	B1_U13 B1_U14	
	K01	Students are able to work individually.	B1_K01
Competence	K02	Students understand the importance of responsibility in engineering activities.	B1_K02
	K03	Students formulate conclusions from the tasks performed and are responsible for the reliability of the results obtained.	B1_K04

COURSE CONTENT

Teaching mode*	Topics covered
	Advantages and disadvantages of steel as a structural material, mechanical properties, production methods, examples of steel used in building structures, and steel bar-type structures.
	Range of steel sections, hot-rolled, welded and cold-formed sections, geometric and strength characteristics of sections used.
	Fundamentals of forming and calculation of welded and bolted connections.
	Section class of a bar element, the behaviour of the section depending on its class under different loading states.
	Dimensioning of elements in axial tension, section weakening.
lecture	Bearing capacity of steel sections in compression, bending and shear depending on its class. Plastic, elastic, critical and supercritical bearing capacity. Bearing capacity reduction in the section under complex loads.
	Dimensioning of compression members, buckling, critical length, effect of
	imperfection, buckling coefficient, fundamentals of calculation of members in
	compression according to the 2nd order theory, structural issues in column design.
	Dimensioning of flexural beams, ways of securing the beam against torsion, the
	phenomenon of lateral torsion, critical moment for different cases of support and loading of the beam, the effect of imperfection, the coefficient of lateral torsion,
	structural issues in the design of beams.
	Introduction to the design of plate girders, section shaping, local and general loss of
	stability, resistance to concentrated loads, stiffening rib design.

	Design of members subjected to simultaneous compression and bending,
	amplification of displacements and cross-sectional forces, dimensioning of
	compression and bending elements taking into account the coefficients of general
	instability and interaction coefficients, fundamentals of compression and bending
	elements calculation according to the second-order theory.
	Joints in metal structures.
	Construction and dimensioning of butt and fillet welds. Examples of calculation and design of shop welded joints.
class	Formation and calculation of bolted connections. Examples of calculation and design of assembly connections.
	Non pre-loaded and pre-loaded slip-resistant lap joints.
	Non pre-loaded and pre-loaded butt joints.
	Occupational Health and Safety Training.
	Estimation of steel mechanical properties based on hardness test.
	Measurement of random geometry of steel sections, comparison of random
	dimensions with nominal ones, tolerances of geometric dimensions.
	Comparison of stiffness of flexural beams made of different metal materials (steel,
	aluminium, brass).
lab	Elastic buckling of a compression member, experimental determination of the critical force.
	Elastic lateral buckling, experimental determination of the critical moment of a single- span transverse beam in bending.
	Bearing capacity of a bolted lap joint, experimental determination of the ultimate load
	and failure mechanism of a bolted flat bar joint.
	Bearing capacity of a bolted butt joint, geometric inventory of existing joint, estimation
	of the design bearing capacity.
	Design of the steel supporting structure of the roof on a single-story building.
project	Statement and assembly drawing of the structure. Dimensioning of structural
project	elements: floor beam, binding joist, and column. Design of a steel joist to column
	assembly. Detailed drawings of calculated elements.

Learning outcome	Verification methods								
	Oral exam	Written exam	Test	Project	Report	Other			
W01			Х	Х					
W02			Х	Х	Х				
W03			Х	Х	Х				
U01			Х	Х					
U02			Х	Х	Х				
U03			Х	Х	Х				
K01			Х	Х					
K02			Х	Х	Х				
K03			Х	Х	Х				

METHODS OF LEARNING OUTCOMES VERIFICATION

ASSESSMENT

Teaching mode*	Assessment type	Criteria
lecture	mark-based	Scoring at least 50% on the written test
class	mark-based	At least a passing grade on each in-class assignment.
lab	mark-based	At least a passing grade on each report.
project	mark-based	Attaining at least a passing grade on each project assignment and at least a passing grade on its written defence.

STUDENT WORKLOAD

ECTS weighting												
	Activities Student workload											
	ACUVILES		fu	ll-tin	ne			ра	rt-tir	ne		
1.	. Scheduled contact hours	W	С	L	Ρ	S	W	С	L	Ρ	S	h
1.	Scheduled contact hours	30	15	15	15		24	12	12	12		- 11
2.	Other (office hours, exams)	2	2	2	2		2	2	2	2		h
3.	Total number of contact hours	83 68					h					
4.	Number of ECTS credits for contact hours	3,3 2,7						ECTS				
5.	Independent study hours		17			32				h		
6.	Number of ECTS credits for independent study		0,7			1,3			ECTS			
7.	Practical hours			60			60					h
8.	Number of ECTS credits for practical hours	2,4 2,4				ECTS						
9.	Total workload	100 100						h				
10.	ECTS credits for the course 1 ECTS credit =25 student learning hours	4										

READING LIST

- 1. PN-EN 1993-1-1:2006/AC:2009 Eurokod 3: Projektowanie konstrukcji stalowych. Część 1-1: Reguły ogólne i reguły dla budynków.
- 2. PN-EN 1993-1-5:2008 Eurokod 3: Projektowanie konstrukcji stalowych. Część 1-5: Blachownice.
- 3. PN-EN 1993-1-8:2006/AC:2009 Eurokod 3: Projektowanie konstrukcji stalowych. Część 1-8: Projektowanie węzłów.
- Budownictwo ogólne. Tom 5. Stalowe konstrukcje budynków. Projektowanie wg. Eurokodów z przykładami obliczeń. Praca zbiorowa pod kierunkiem M. Giżejowskigo i J. Zółki. Arkady, Warszawa 2010.
- 5. Rykaluk K.: Konstrukcje metalowe. Część 1. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław 2016.
- Konstrukcje stalowe. Przykłady obliczeń według PN-EN 1993-1. Część pierwsza. Wybrane elementy i połączenia. Praca zbiorowa pod red. A. Kozłowskiego. Oficyna Wydawnicza Politechniki Rzeszowskiej. Rzeszów 2012.
- Konstrukcje stalowe. Przykłady obliczeń według PN-EN 1993-1. Część druga. Stropy i pomosty. Praca zbiorowa pod red. A. Kozłowskiego. Oficyna Wydawnicza Politechniki Rzeszowskiej. Rzeszów 2015.
- 8. Goczek J., Supeł Ł., Gajdzicki M.: Przykłady obliczeń konstrukcji stalowych. Wydawnictwo Politechniki Łódzkiej, Łódź 2011.
- 9. Trahair N., Bradford M., Nethercot D., Gardner L.: The behaviour and design of steel structures to EC3. Taylor and Francis, London and New York 2008.
- 10. Łubiński M., Filipowicz A., Żółtowski W.: Konstrukcje Metalowe. Część I. Arkady, Warszawa 2000.