

MODULE SPECIFICATION

Module code	
Module title in Polish	Oczyszczanie Wody 1
Module title in English	Water Treatment 1
Module running from the academic year	2017/2018

A. MODULE IN THE CONTEXT OF THE PROGRAMME OF STUDY

Field of study	Environmental Engineering First-cycle full-time programme
Level of qualification	1st degree (first cycle, second cycle)
Programme type	academic (academic/practical)
Mode of study	Full-time (full-time/part-time)
Specialism	Water Supply, Treatment of Wastewater and Solid Waste
Organisational unit responsible for module delivery	Department of Water and Wastewater Technology
Module co-ordinator	Jarosław Gawdzik, PhD hab.
Approved by:	Lidia Dąbek, PhD hab., Professor of the University

B. MODULE OVERVIEW

Module type	core module (core/programme-specific/elective HES*)
Module status	compulsory module (compulsory/optional)
Language of module delivery	Polish/English
Semester in the programme of study in which the module is taught	semester 4
Semester in the academic year in which the module is taught	summer semester (winter semester/summer semester)
Pre-requisites	None (module code/module title, where appropriate)
Examination required	(Yes/ No)
ECTS credits	4

* elective HES – elective modules in the Humanities and Economic and Social Sciences

Mode of instruction	lectures	classes	laboratories	others	
		al. T	Polite ysiąclecia Państwa Pols tel.: 41 34 24 {	www.tu	.kielce.p

e-mail: wisge@tu.kielce.pl

Total hours per	15	15	30	
semester				

Politechnika Świętokrzyska al. Tysiąclecia Państwa Polskiego 7; 25-314 Kielce tel.: 41 34 24 850, fax: 41 34 42 860 e-mail: wisge@tu.kielce.pl

C. LEARNING OUTCOMES AND ASSESSMENT METHODS

Module aims The aim of the module is to familiarise students with the issues of theoretical fundamentals of treatment processes of surface water. The following issues are discussed: devices and parameters which are indispensable for their design; natural purification processes. As part of the classes, students can learn practical effectiveness of particular elementary processes applied as part of the water treatment system.

Module		Mode of	Correspondin	Correspondin
outcome	Module learning outcomes	instruction	a programme	g discipline-
code	incluie fourning outcomoo	(l/c/lab/p/	outcome code	specific
		others)		outcome code
	A student has fundamental knowledge on the	l/l/c		T1A_W04
	systems of treating surface water treatment.		IŚ_W09	T1A_W05 T1A_W06
W 01				T1A_W00
	A student knows the conditions of exploiting water	I		T1A_W04
	conditioning station devices.		IŚ_W09	T1A_W05
W 02	3 .		IS_W10	T1A_W06
02	A student is knowledgeable about the	l/c		T1A_W07
	A student is knowledgeable about the		IŚ W09	T1A W05
	in the evetem of eurface water treatment		-	T1A_W06
03	In the system of surface water treatment.			T1A_W07
		l/c		T1A_U02
				T1A_003
			IŚ_U02	T1A_U08
	A student can design an experiment which		IŚ_U11	T1A_U09
	facilitates the reduction level of basic		IS_U15	T1A_U10
	contaminations of surface water.			T1A_011 T1A_U13
				T1A U14
U_01				T1A_U15
	A student can conduct an experiment which	I	IŚ U02	T1A_U02
	facilitates the assessment of effectiveness as		IŚ_U07	T1A_U08
U 02	regards the elementary operations examined.			T1A_005
		l		T1A_U01
				T1A_U06
			IŚ_U01	11A_003
	A student has general knowledge of solving		IŚ_U06	T1A_007
	exploitation problems concerning water treatment		IS_015	T1A_U09
	stations.			T1A_U10
				T1A_U11
				T1A_013 T1A_U14
U_03				T1A_U15
	A student can work individually and in a team.	l/c		T14 K03
	Furthermore, a student can organize teamwork		IŚ K01	T1A K04
	which will realise the given task. In addition, a		IŚ_K05	T1A_K05
	student can divide work among team members as		IŚ_K07	T1A_K01
K 01	regards tasks according to their competences.			11A_K07
		l/c		T1A_K02
	A student can formulate conclusion and describe		IŚ_K02	T1A_K05
	the results of the obtained work. A student is		IS_K05	T1A_K04
	responsible for the reliability of the obtained		IŚ K07	T1A_K05
K 02	results.		10_100	T1A_K07
	A student is aware of technological progress and	l/l/c		
	the necessity of implementing modern systems of		IŚ_K09	T1A_K02
K 03	water treatment.		_	

Module content:

|--|

No.	Topics	Module outcome code
1.	Discussing the subject matter of the lectures. Discussing the literature on the subject. Contamination concerning natural water; the types of additions (soluble compounds in the ionic and non-ionic state; colloids; microsuspensions and suspensions; the requirements concerning drinkable and industrial water).	W_01 W_03
2.	Theoretical fundamentals of contamination removal processes from natural water; precipitating suspensions, removing contaminations with divisions; sifting – trusses, sieves, and microsieves.	W_01 U_01
3.	Filtration from porous materials, filtration with a cake filtration, nanofiltration, inverse osmosis; slow filters, precoated (diatomic) filters; filtering water intakes.	W_01 U_03
4.	Output data for designing surface water treatment stations; technological systems of treating surface water.	W_03 U_01 U_03
5.	Coagulation – the types of coagulants; polielectrolytes; activated silicate; devices for preparing chemical reagents; alkalinity balance.	W_01
6.	The methods of correcting water reactions; the principles of designing them and technical solutions.	W_01 W_03 U_01
7.	Sedimentation of grain and floc suspension (fluid state); clarifiers (their classification).	W_03 U_01
8.	Constructional solutions of settling tanks and their technological parameters.	W_02 U_03
9.	Contact filters; materials applied as fillings of rapid filters; constructional solutions of gravitational filters.	W_01 W_02 W_03
10.	Constructional solutions of pressure filters; the phenomena taking place in deposits during filtration.	W_02 U_01 U_03
11.	Disinfection methods as regards pipeline water. Chlorine, chlorine dioxide (their properties and application). The reactions of chlorine with ammonia. The principles of designing chlorination plants.	W_03 U_01
12.	The creation of THMs during the disinfection of water with chlorine. Henry's law. Removing ethereal organic compounds from water. Constructional solutions.	W_02 W_03 U_01 U_03
13.	Filtration water intakes. Location conditions. The objects of supplying water bearing stratum. The systems of treating filtrating water.	W_02
14.	Removing organic compounds from water; sorption (theoretical fundamentals). Sorption isotherms.	W_01
15.	Ozone in water technologies. The Picabol method. Removing algae from water.	W_02 W_03 U_01 U_03 K_03

2. Topics to be covered in the classes

No.	Topics	
1.	The methods of calculating the volume of reagents on the basis of the assigned values of samples.	W_01 U_01 K_01
2.	Sedimentation of the grain and floc suspension. Introduction to settling tanks.	W_03 U_01 K_01 K_02
3.	The methods of correcting water reaction. Calculating the exponent of hydrogen and hydroxide ions. Calculating the coagulation process.	W_01 U_01 K_01 K_02 K_03
4.	The fundamentals of designing the process of iron removal form water.	W_01 W_03 U_01 K_01 K_02
5.	Numerical determining adsorption isotherms.	U_01 K_01 K_02
6.	Calculations concerning water disinfection devices.	W_01 W_03 U_01 K_03

Module content:

3. Topics to be covered in the laboratories

No.	Topics	Module outcome code
1.	Orientation class. Discussing the scope of laboratory classes. Familiarising students with OHS regulations as well as with the principles of behaving in the Water Treatment Laboratory.	W_01
2.	Sieve analysis of filtration sand.	W_01 U_02 K_01 K_02
3.	Water coagulation with aluminium and iron salts.	W_01 U_02 K_01 K_02 K_03
4.	Softening water with precipitation methods.	W_01 U_02 K_01 K_02
5.	Removing iron and manganese from water.	W_01 U_02 K_01 K_02
6.	Determining adsorption effectiveness on active carbon.	W_01 U_02 K_01 K_02
7.	Demineralisation of water on ion exchangers.	W_01 U_02 K_01 K_02

Assessment methods

Module outcome code	Assessment methods (Method of assessment; for module skills – reference to specific project, laboratory and similar tasks)
W_01	A test and a report
W_02	A test
W_03	A test
U_01	A test
U_02	A test and a report
U_03	A test
K_01	A test, a report, and observing a student's involvement during laboratory classes
K_02	A test and a report
K_03	A test and a report

D. STUDENT LEARNING ACTIVITIES

	ECTS summary				
	Type of learning activity	Study time/ credits			
1	Contact hours: participation in lectures	15			
2	Contact hours: participation in classes	15			
3	Contact hours: participation in laboratories	30			
4	Contact hours: attendance at office hours (2-3 appointments per semester)	3			
5	Contact hours: participation in project-based classes				
6	Contact hours: meetings with a project module leader				
7	Contact hours: attendance at an examination	4			
8					
9	Number of contact hours	67 (total)			
10	Number of ECTS credits for contact hours (1 ECTS credit = 25-30 hours of study time)	2.7			
11	Private study hours: background reading for lectures	3			
12	Private study hours: preparation for classes	4			
13	Private study hours: preparation for tests	3			
14	Private study hours: preparation for laboratories	3			
15	Private study hours: writing reports	6			
16	Private study hours: preparation for a final test in laboratories	4			
17	Private study hours: preparation of a project/a design specification				
18	Private study hours: preparation for an examination	10			
19					
20	Number of private study hours	33 (total)			
21	Number of ECTS credits for private study hours (1 ECTS credit = 25-30 hours of study time)	1.3			
22	Total study time	100			
23	Total ECTS credits for the module (1 ECTS credit = 25-30 hours of study time)	4.0			
24	Number of practice-based hours Total practice-based hours	62			
25	Number of ECTS credits for practice-based hours (1 ECTS credit = 25-30 hours of study time)	2.5			

E. READING LIST

References	1.Droste, L. Ronald: <u>"Theory and practice of water and wastewater treatment"</u> New York: John Wiley & Sons, 1997

	2. Shun Dar Lin, C. Lee: "Water and Wastewater Calculations Manual " McGraw Hill Professional,
	2007
	3.McGraw Hill Professional "Water Treatment Plant Design, Fifth" Edition American Water Works
	Association, American Society of Civil Engineers, 2012
	4.A.D. Patwardhan: "Industrial waste water treatment" PHI Learning Pvt. Ltd., 2008
	5. J.Edzwald "Water Quality & Treatment: A Handbook on Drinking" Water American Water Works
	Association, Mcgraw - hill, 2010
	6. Gary W vanLoon, Stephen J.Duffy: "Environmental Chemistry", Oxford Univesity Press 2010.
	7. Gray N.F.: "Water Technology: An Introduction for Environmental Scientists and Engineers, 3rd
	Edition", Butterworth-Heinemann, 2010.
Module website	

Politechnika Świętokrzyska al. Tysiąclecia Państwa Polskiego 7; 25-314 Kielce tel.: 41 34 24 850, fax: 41 34 42 860 e-mail: wisge@tu.kielce.pl