

MODULE SPECIFICATION

Module code	
Module title in Polish	Fizyka II
Module title in English	Physics 2
Module running from the academic year	2016/2017

A. MODULE IN THE CONTEXT OF THE PROGRAMME OF STUDY

Field of study	Surveying and Cartography
Level of qualification	first cycle (first cycle, second cycle)
Programme type	academic (academic/practical)
Mode of study	full-time (full-time/part-time)
Specialism	All
Organisational unit responsible for module delivery	The Department of Physics
Module co-ordinator	Medard Makrenek, PhD
Approved by:	Prof. Andrzej Okniński, PhD hab.

B. MODULE OVERVIEW

Module type	core module (core/programme-specific/elective HES*)
Module status	compulsory module (compulsory/optional)
Language of module delivery	English
Semester in the programme of study in which the module is taught	semester 2
Semester in the academic year in which the module is taught	Summer semester (winter semester/summer semester)
Pre-requisites	None (module code/module title, where appropriate)
Examination required	Yes (yes / no)
ECTS credits	5

* elective HES – elective modules in the Humanities and Economic and Social Sciences

Mode of instruction	lectures	classes	laboratories	project	others
Total hours per semester	30		15		

C. LEARNING OUTCOMES AND ASSESSMENT METHODS

Module aims The aim of the module is to acquaint students with the description of physical phenomena in macroscopic physical systems comprising multiple atoms or particles as part of thermodynamics and statistical physics. Other aims include: understanding the properties of the equilibrium state and irreversible processes; the ability of making simple calculations with the use of the probability calculus.

Module outcome code	Module learning outcomes	Mode of instruction (l/c/lab/p/ others)	Corresponding programme outcome code	Corresponding discipline-specific outcome code
W_01	A student has knowledge on the properties of the equilibrium state and irreversible processes.	1/1	GiK_W01	T1 A_W01
W_02	A student is knowledgeable about the description of physical phenomena in macroscopic physical systems which consist of several atoms of particles as part of thermodynamics and statistical physics.	ΙΛ	GiK_W01	T1 A_W01
W_03	A student knows and understands the principles of thermodynamics.	1/1	GiK_W01	T1 A_W01
U_01	A student can solve simple problems concerning thermodynamics and the ideal gas models (with the use of the probability calculus.	1	GiK _U01 GiK _U03 GiK _U18 GiK _U21	T1A_U01 T1A_U05 T1A_U09 T1A_U13 T1A_U15
U_02	A student can plan and conduct technical experiments (as well as present their results).	I	GiK _U01 GiK _U03 GiK _U18 GiK _U21	T1A_U01 T1A_U05 T1A_U09 T1A_U13 T1A_U15
K_01	A student understands and knows the possibilities of continuous learning and raising his/her own professional, personal, and social competences.	1/1	GiK _K01 GiK _K02	T1A_K01 T1A_K02 T1A_K05 T1A_K07
K_02	A student can work in a group by accepting various roles in it and understanding specific priorities to complete a task.	I	GiK _K06 GiK _K07 GiK _K08	T1A_K03 T1A_K04

Module content:

1. Topics to be covered in the lectures

No.	Topics	Module outcome code
1	Thermodynamic paradoxes and their explanation.	W_01 U_01
2	Equilibrium state as the most probable state. Irreversible processes.	W_01 U_01
3	A model of an ideal gas.	W_02 U_01 K_01
4	Fluctuations. Brownian motion.	W_02 U_01
5	Deriving a formula for mean free path.	W_02 U_01
6	Deriving a formula for gas pressure. Calculating the velocity of gas particles.	W_02 U_01

7	The definition of temperature.	W_03 U 01
8	The zeroth law of thermodynamics. Kelvin temperature scale.	W_03 U_01 U_02
9	The first law of thermodynamics.	W_03 U_01 K_01
10	Heat transfer in gases, liquids, and solid bodies.	W_03 U_01
11	Demonstrating the properties of liquid nitrogen as well as the properties of materials in low temperatures.	W_03 U_02
12	Deriving an equation of the state of a real gas (van der Waals).	W_03 U_03
13	Analysing van der Walls equation.	W_03 U_02
14	The distribution of gas particle velocity.	W_03 U_01
15	The second law of thermodynamics. Entropy.	W_03 U_01 K_01

2. Topics to be covered in the laboratories

No.	Topics	Module outcome code
1	Introduction to the calculus of errors.	U_02
2, 3	Mechanical Laboratory (two laboratory exercises to choose from):	U_02 K_02
	M1 – Examining uniformly variable motion with the Atwood machine	
	M2 – Determining Young's modulus	
	M3 – Determining the Cp/Cv ratio with the Clement-Desormes method	
	M4 – Determining specific heat of solid bodies, determining ice fusion heat	
	M6 – Hooke's law. Harmonic oscillations.	
	M7 – Determining gravitational acceleration with Kater's pendulum	
	M8 - Determining the coefficient of fluid viscosity with the Hoppler viscometer	
4, 5	Electrical Laboratory (two laboratory exercises to choose from):	U_02 K_02
	E1 – Examining magnetic hysteresis loop of ferromagnetic substances with an	
	oscilloscope	
	E3 – Determining static characteristics of a bipolar transistor in the common emitter	
	system	
	E5 – Examining resonance in the RLC circuit	
	E6 – Determining copper electrochemical equivalent and Faraday constant	
	E7 – Examining a single-phase transformer	
6, 7	Optical Laboratory (two laboratory exercises to choose from):	U_02 K_02
	O1 – Determining angle of polarisation plane and torsion of a typical sugar solution	
	O3 – Examining optical spectra	
	O4 – Determining the refractive index with a microscope	
	O5 – Determining constant diffraction grating and the length of light waves	
	O6 – Examining polarised light	
	07 - Determining focal distance of a lens	
	O8 – Measuring numerical aperture of optic fibre	
	O9 – Photometric law of distance	

Assessment methods

Module outcome code	Assessment methods (Method of assessment; for module skills – reference to specific project, laboratory and similar tasks)
W_01	An examination, a mid-term test, a final test, and oral presentations
W_02	An examination, a mid-term test, a final test, and oral presentations
W_03	An examination, a mid-term test, a final test, and oral presentations
U_01	An examination, a mid-term test, a final test, and oral presentations
U_02	Observing a student's involvement, a test on six classes, reports on the classes
K_01	Observing a student's involvement during the classes and a discussion during the classes
K_02	Observing a student's involvement during laboratory classes

D. STUDENT LEARNING ACTIVITIES

	ECTS summary	
	Type of learning activity	Study time/ credits
1	Contact hours: participation in lectures	30
2	Contact hours: participation in classes	
3	Contact hours: participation in laboratories	15
4	Contact hours: attendance at office hours (2-3 appointments per semester)	3
5	Contact hours: participation in project-based classes	
6	Contact hours: meetings with a project module leader	
7	Contact hours: attendance at an examination	2
8		
9	Number of contact hours	50 (sum)
10	Number of ECTS credits for contact hours (1 ECTS credit = 25-30 hours of study time)	2.0
11	Private study hours: background reading for lectures	20
12	Private study hours: preparation for classes	
13	Private study hours: preparation for tests	5
14	Private study hours: preparation for laboratories	15
15	Private study hours: writing reports	15
16	Private study hours: preparation for a final test in laboratories	
17	Private study hours: preparation of a project/a design specification	
18	Private study hours: preparation for an examination	20
19		
20	Number of private study hours	75 (sum)
21	Number of ECTS credits for private study hours (1 ECTS credit = 25-30 hours of study time)	3.0

22	Total study time	125
23	Total ECTS credits for the module (1 ECTS credit = 25-30 hours of study time)	5
24	Number of practice-based hours Total practice-based hours	45
25	Number of ECTS credits for practice-based hours (1 ECTS credit = 25-30 hours of study time)	1.7

E. READING LIST

References	
Module website	

Politechnika Świętokrzyska al. Tysiąclecia Państwa Polskiego 7; 25-314 Kielce tel.: 41 34 24 850, fax: 41 34 42 860 e-mail: wisge@tu.kielce.pl