

MODULE SPECIFICATION

Module code	
Module title in Polish	Fizyka I
Module title in English	Physics 1
Module running from the academic year	2016/2017

A. MODULE IN THE CONTEXT OF THE PROGRAMME OF STUDY

Field of study	Surveying and Cartography
Level of qualification	first cycle (first cycle, second cycle)
Programme type	academic (academic/practical)
Mode of study	full-time (full-time/part-time)
Specialism	All
Organisational unit responsible for module delivery	The Department of Physics
Module co-ordinator	Medard Makrenek, PhD
Approved by:	Prof. Andrzej Okniński, PhD hab.

B. MODULE OVERVIEW

Module type	core module (core/programme-specific/elective HES*)
Module status	compulsory module (compulsory/optional)
Language of module delivery	
Semester in the programme of study in which the module is taught	semester 1
Semester in the academic year in which the module is taught	Winter semester (winter semester/summer semester)
Pre-requisites	None (module code/module title, where appropriate)
Examination required	No (Yes/No)
ECTS credits	4

* elective HES - elective modules in the Humanities and Economic and Social Sciences

Mode of instruction	lectures	classes	laboratories	project	others
Total hours per semester	30	15			

Politechnika Świętokrzyska al. Tysiąclecia Państwa Polskiego 7; 25-314 Kielce tel.: 41 34 24 850, fax: 41 34 42 860 e-mail: wisge@tu.kielce.pl

C. LEARNING OUTCOMES AND ASSESSMENT METHODS

Module aims The aim of the modules includes the following: presenting the principles of modelling physical reality on the basis on Newton's classical mechanics; familiarising students with the description of motion, the causes of motion and with the principles of modelling motion; students are also acquainted with basic information on vector, differential, and integral calculus.

Module outcome code	Module learning outcomes	Mode of instruction (I/c/lab/p/ others)	Corresponding programme outcome code	Corresponding discipline-specific outcome code
W_01	A student has knowledge on the description of motion as regards a material particle in the coordinate system. A student also knows Galilean and Lorentz transformations.	l/c	GiK_W01 GiK_W15	T1 A_W01 T1 A_W03
W_02	A student is familiar with Newtonian laws of a material particle (as well as the concept of work, power, and energy).	l/c	GiK_W01	T1 A_W01
W_03	A student has knowledge on the description of harmonic motion.	l/c	GiK_W01	T1 A_W01
W_04	A student understands the principles of conservation of the <i>n</i> system of material particles.	l/c	GiK_W01	T1 A_W01
U_01	A student can solve simple problems concerning kinematics and dynamics of a material particle with the use of a differential calculus.	l/c	GiK _U01 GiK _U03 GiK _U18 GiK _U21	T1A_U01 T1A_U05 T1A_U09 T1A_U13 T1A_U15
U_02	A student is able to explain and apply the principles of conservation of momentum and energy.	l/c	GiK _U01 GiK _U03 GiK _U18 GiK _U21	T1A_U01 T1A_U05 T1A_U09 T1A_U13 T1A_U15
U_03	A student has the ability of analysing harmonic motion.	l/c	GiK _U01 GiK _U03 GiK _U18 GiK _U21	T1A_U01 T1A_U05 T1A_U09 T1A_U13 T1A_U15
K_01	A student understands the necessity and knows the possibility of continuous education and raising his/her professional, personal, and social competences.	l/c	GiK _K01 GiK _K02	T1A_K01 T1A_K02 T1A_K05 T1A_K07
K_02	A student is aware of the importance and understands non-technical aspects and effects engineering activity.	l/c	GiK _K03 GiK _K05	T1A_K02

Module content:

1. Topics to be covered in the lectures

No.	Topics	Module outcome code
1	A short outline of the development of civilisation (drawing particular attention to the period since 1600). Basic branches of physics. The structure of science.	W_01 U_01
2	The description of motion - the kinematics of material particle. System of	W_01 U_01

	coordinates and vectors. Function derivative.	
3	Newton's laws of the dynamics of a material particle. Interactions and forces.	W_02 U_01 K_01
4	Motion relativity. Galilean transformation.	W_01 U_01
5	Lorentz transformation.	W_01 U_01
6	Motion planning. Integrating the equations of motion – samples.	W_01 U_01
7	Work, power, and energy.	W_02 U_01 U_02
8	Potential and non-potential forces.	W_02 U_01 U_02
9	The principles of conservation of momentum and energy.	W_03 U 03
10	Harmonic motion as an example of modelling vibrating motion.	W_03 U_03
11	Analysing a harmonic oscillator with silencing and external excitation force.	W_03 U_03
12	Examples and application of harmonic motion.	W_03 U_03
13	The dynamics of <i>n</i> material particles system.	W_03 U_02
14	The principles of conservation of <i>n</i> material particles.	W_04 U_02
15	Analysing the dynamics of the solar system.	W_04 U_02 K_02

2. Topics to be covered in the classes

No.	Topics	Module outcome code
1	Vectors: the concept of a vector, the notion of a scalar, operations on vectors – adding, subtracting, multiplying a vector by a number, a scalar and vector product, vectors in relations the laws of physics.	W_01 U_01
2	Uniformly accelerated motion: position vector, displacement vector, motion track, and mean velocity. Uniformly accelerated motion: spot speed, mean and spot acceleration.	W_01 U_01
3	Uniformly accelerated motion, cont.: free fall, a vertical throw upwards and downwards.	W_01 U_01 K_01
4	Diagonal throw: deriving formulas for the range of throw, maximum height and total time of particle flight.	W_02 U_02
5	The dynamics of a material point: first, second, and third Newton's law.	W_02 U_02
6	Kinetic and potential energy, and work. The law of conservation of mass.	W_02 U_02
7	Harmonic oscillator.	W_03 U_03
8	Systems of particles: centre of gravity as regards a system of particles, the momentum of a system of particles.	W_04 U_02 K_02

Assessment methods

W_01	A mid-semester test, a final test, and oral presentations.
W_02	A mid-semester test, a final test, and oral presentations.
W_03	A mid-semester test, a final test, and oral presentations.
U_01	A mid-semester test, a final test, and oral presentations.
U_02	A mid-semester test, a final test, and oral presentations.
U_03	A mid-semester test, a final test, and oral presentations.
K_01	Observing a student's involvement during the classes, a discussion during the classes.
K_02	Observing a student's involvement during the classes, a discussion during the classes.

Politechnika Świętokrzyska al. Tysiąclecia Państwa Polskiego 7; 25-314 Kielce tel.: 41 34 24 850, fax: 41 34 42 860 e-mail: wisge@tu.kielce.pl

D. STUDENT LEARNING ACTIVITIES

	ECTS summary	
	Type of learning activity	Study time/ credits
1	Contact hours: participation in lectures	30
2	Contact hours: participation in classes	15
3	Contact hours: participation in laboratories	
4	Contact hours: attendance at office hours (2-3 appointments per semester)	5
5	Contact hours: participation in project-based classes	
6	Contact hours: meetings with a project module leader	
7	Contact hours: attendance at an examination	
8		
9	Number of contact hours	50 (total)
10	Number of ECTS credits for contact hours (1 ECTS credit = 25-30 hours of study time)	2,0
11	Private study hours: background reading for lectures	20
12	Private study hours: preparation for classes	20
13	Private study hours: preparation for tests	10
14	Private study hours: preparation for laboratories	
15	Private study hours: writing reports	
16	Private study hours: preparation for a final test in laboratories	
17	Private study hours: preparation of a project/a design specification	
18	Private study hours: preparation for an examination	
19		
20	Number of private study hours	50
21	Number of ECTS credits for private study hours	2.0
- 22	(1 ECTS credit = 25-30 hours of study time)	2,0
22	Total study time	100
23	1 OTAL EC 1 S Credits for the module (1 ECTS credit = 25-30 hours of study time)	4
24	Number of practice-based hours	
	Total practice-based hours	
25	Number of ECTS credits for practice-based hours (1 ECTS credit =25-30 hours of study time)	

E. READING LIST

References	
Module website	